
MegDet: A Large Mini-batch Object Detector

Chao Peng∗ Tete Xiao1∗ Zeming Li2∗ Yuning Jiang Xiangyu Zhang Kai Jia Gang Yu Jian Sun
Megvii (Face++) Inc., {pengchao, jyn, zhangxiangyu, jiakai, yugang, sunjian}@megvii.com

1School of EECS, Peking University, jasonhsiao97@pku.edu.cn
2School of Software, Tsinghua University, lizm15@mails.tsinghua.edu.cn

Abstract

The development of object detection in the era of deep
learning, from R-CNN, Fast R-CNN and Faster R-CNN, to
more recent Mask R-CNN and RetinaNet, mainly comes
from novel network, framework, or loss design. However,
mini-batch size, a milestone technique for the training of
deep neural networks, has not been well studied for object
detection. In this paper, we present the Large Mini-batch
Object Detector (MegDet), which enables training with a
much larger mini-batch size up to 256. To address the opti-
mization issues when trained with such a batch-size, we use
a warm-up policy and propose a Cross-GPU Batch Normal-
ization operation. With these techniques, we can effectively
utilize multiple GPUs (up to 128 in our experiments) to sig-
nificantly reduce the training time from 33 hours to 4 hours
on our self-implemented large scale deep learning platform,
while achieve even better performance. The MegDet is the
backbone of our submission to MSCOCO 2017 Challenge,
where it ranks the 1st place in Ojbect Detection task.

1. Introduction

Tremendous progresses have been made on CNN-based
object detection, from pioneering R-CNN [8], Fast/Faster
R-CNN series [7, 28], to more recent works such as Mask
RCNN [11] and RetinaNet [21]. The improvements are
mainly driven by better back-bone networks [33, 35, 13,
16], new detection framework [28, 11], novel loss de-
signs [21] and so on.

A recent trend in image classification demonstrates the
possibility to use very large mini-batch size to significantly
speed up the training procedure. In particular, the training
of ResNet-50 [13] can be accomplished in an hour [10] or
even in 14 minutes [38], by scaling the training to multiple
servers with mini-batch sizes of 8, 192 or 32, 768, respec-
tively, while suffers little drop in terms of performance. In

∗: Equal contribution. This work was done when Tete Xiao and Zeming
Li were interns at Megvii Research.

0 5 10 15 20 25 30 35
Time

37.7

36.2

30

25

20

15

40

35

m
m
A
P

Time-Accuracy

16-batch
256-batch

Figure 1: MSCOCO validation mmAP v.s. the mini-
batch size. We present a Large Mini-batch Object Detector
based on FPN, which allows an almost order-of-magnitude
acceleration, and reaches better performance. The version
that uses a mini-batch size of 256 on 128 GPUs can be
trained in ∼4 hours, a significant shorter period compared
with its counterpart with a mini-batch size of 16 on 8 GPUs.

contrast, the mini-batch size remains very small in object
detection. For example, a mini-batch involves only 2 im-
ages in prevalent frameworks such as Faster R-CNN and
R-FCN [4], though the mini-batch size is increased to 16 in
state-of-the-art frameworks such as Mask R-CNN and Reti-
naNet, which is still quite small compared with it in image
classification. Our goal in this paper is to explore the impact
of mini-batch size in object detection and develop a practi-
cal solution for the training of a large mini-batch size object
detector.

The main drawback associated with small mini-batch
size is the overly lengthy training time. Since the im-
provements in performance are often coupled with larger
datasets and architectures that require more computational
resources, the training time is inevitably boosted to a level

that computer vision researchers cannot bare. For example,
the training of ResNet-152 on MSCOCO dataset [22] takes
3 days, with the mini-bath size as 16 on a server with 8
NVIDIA Titian XP GPUs. The second drawback is that a
small mini-batch size fails to estimate batch statistics accu-
rately for batch normalization (BN) [17], an essential tech-
nique to train deep neural networks. Such a problem can
dramatically downgrade the performance of object detec-
tion models. Last but not least, the numbers of positive and
negative training samples within a relative small mini-batch
are more likely to be imbalanced. This unreasonable dis-
tribution may further lead to sub-optimal performance. De-
tails are presented in Section 3.1.

Nevertheless, the effort to increase the mini-batch size
of object detection is not trivial. The first dilemma is that,
according to “the equivalent learning rate rule” [10, 18],
which indicates that when the mini-batch size is multiplied
by k, the learning rate shall also be multiplied by k, a large
mini-batch size requires a large learning rate to reduce the
training procedure and match the performance of the model
with a small mini-batch size. However, such a large learn-
ing rate could lead to inferior results, even the failure of
convergence. The second dilemma is the physical limita-
tion of GPU memories, for that the input scale for object
detection is normally set as 800 × 800 to detect small ob-
jects, which is much larger than it for image classification.
While scaling networks via distributed synchronous SGD is
now commonplace for image classification, there still lack
of works on such technique for object detection.

To tackle the above-mentioned dilemmas, we propose a
solution that enables the training of a large mini-batch ob-
ject detection. First, we present a new explanation of linear
scaling rule and adopt the “warm-up” learning rate policy
in [10] to gradually increase the learning rate at the very
early stage of training. This increases the chance of conver-
gence. Second, to further address the performance and con-
vergence issues, we propose Cross-GPU Batch Normaliza-
tion (CGBN), to exploit the fact that we have a large number
of samples in a mini-batch. CGBN not only improves the
performance but also makes the training much more stable.
More importantly, we have observed that we can keep the
final accuracy while increasing the mini-batch size with the
help of the CGBN.

Our MegDet on MSCOCO with a ResNet-50 as back-
bone can be trained in∼4 hours using 128 GPUs, compared
with the 33-hour training time of its counterpart with regu-
lar mini-batch size. The curves of performance v.s. training
time are shown in Figure 1. Importantly, not only does our
method consume significantly shorter time, but also reaches
even better performance. This means that we can enjoy
the rapidly increased computational power from industry
by speeding up the innovation cycle by nearly an order-of-
magnitude. Based on MegDet, we achieve the 1st place

of MSCOCO 2017 Detection Challenge. Our contributions
can be summarized as follows:
• We provide a new interpretation of linear scaling rule,

in the context of object detection, based on an assump-
tion of maintaining equivalent loss variance.
• We are the first to perform BN in the object detec-

tion framework. We demonstrated that our Cross-GPU
BN not only benefits the accuracy, but also makes the
training easy to converge, especially for the large mini-
batch size.
• We are the first to finish the COCO training (based on

ResNet-50) in 4 hours, using 128 GPUs, and achieving
improved accuracy.
• Our MegDet leads to the winning of COCO 2017 De-

tection Challenge.

2. Related Work

Object detection. With the development of convolutional
neural networks (CNNs), great progress has been made in
object detection. State-of-the-art object detectors can be
roughly divided into two categories: two-stage detectors
and one-stage detectors.

Since R-CNN [8] is proposed, two-stage framework has
become the de facto paradigm for object detection. With the
help of the Selective Search algorithm [36], the first stage
generates a relatively small set of proposals containing the
possible locations of all objects in an image, followed by the
second stage which classifies each region into foreground
or background. In the R-CNN framework, the second stage
is a CNN that takes each region after resize as input then
processes separately. To overcome the tremendous com-
putational bottleneck that every proposal needs to be fed
as input of CNNs, Spatial Pyramid Pooling (SPP) [12] and
RoI Pooling [7] operators are proposed, so that a single im-
age can be forwarded only once with a classification head
that warps and classifies each proposal on top of a feature
map. In Faster R-CNN [28] the traditional proposal algo-
rithm is replaced by the Region Proposal Network (RPN)
which integrates region proposal with classification to form
a single end-to-end network. More recent two-stage frame-
works involve R-FCN [4], in which a position-sensitive
pooling is proposed to get rid of the heavy classification
head; FPN [20], in which a generic feature extractor that ex-
ploits multi-level feature representations in an inherent and
pyramidal hierarchy is proposed; and Mask R-CNN [11], in
which a novel feature pooling technique termed RoI Align
is proposed, and Faster R-CNN is extended to predict object
masks in parallel with bounding boxes.

For one-stage detector, OverFeat [30] is one of the first
one-stage detectors built on CNNs. More recent works,
such as YOLO [26, 27] and SSD [23], demonstrate great
potential in the field of object detection. YOLO uses a fully

Epoch Batch Size Ratio(%)

1 16 5.58
256 9.82

6 16 11.77
256 16.11

12 16 16.59
256 16.91

Table 1: The ratio of positive and negative samples in the
training at epoch 1, 6, 12. A larger batch size makes the
ratio more balanced, especially at the early stage.

convolutional network (FCN) to obtain classification and
regression predictions simultaneously. SSD [23] presents
a architecture that detects objects with different scales on
different feature maps. These frameworks run fast, still,
they trail two-stage detectors in terms of performance by a
large margin. Recently, RetinaNet is proposed in [21] with
a novel focal loss which significantly narrows the gap be-
tween two-stage detectors and one-stage ones.

Training neural networks with large mini-batch size.
Coupled with the prosperity of deep learning, training deep
neural networks with distributed SGD on various servers
is drawing more attention. With no doubt, such large-
scale distributed training can result in a nontrivial growth
of mini-batch sizes, which makes it hard to maintain the
original performance. In [10], Goyal et al. provide empir-
ical insights that address the problems when trained with a
large mini-batch size. Specifically, they are able to train a
ResNet-50 network on ImageNet dataset [5] with the mini-
batch size of 8, 192 on 256 NVIDIA Tesla P100 GPU, and
reduce the training time to less one hour, while demon-
strate no loss of accuracy. You et al. [38] further increase
the mini-batch size to 32, 768, and dramatically reduce the
training time of a ResNet-50 to 14 minutes on 2, 048 KNLs.
Hoffer et al. [14] investigate the generalization gap between
large batch and small batch, and provide insights to explain
and eliminate the gap. However, in spite of the thriving dis-
cussion of training neural networks with large mini-batch
size on image classification, so far there still lacks study for
it on object detection.

3. Approach

In this section, we present our Large Mini-Batch Detec-
tor (MegDet). We start by discussing the problems when
training a object detector using small mini-batch; then pro-
vide a new interpretation for the “equivalent learning rate
rule”; and finally describe several techniques that enable
our approach to be trained with much larger mini-batch size
with even better performance.

(a) (b)

(c) (d)

Figure 2: Examples of positive and negative proposals. (a-
b) Two examples with imbalanced ratio. (c-d) Two exam-
ples with moderate balanced ratio. Note that we sample the
negative proposals for clearer visualization.

3.1. Problems with Small Mini-Batch Size

Our motivation behind that we are interested in training
object detectors with large mini-batch comes from the fol-
lowing several observations. First, to enjoy the develop-
ments of large neural network architectures and datasets is
not free, i.e., it takes significantly amount of time to train
a single network. As shown in Figure 1, it takes more than
30 hours to train a detector based on ResNet-50 with mini-
batch size of 16. Even worse, with mini-batch size of 2 it
will take more than a week to complete training the same
model. Second, with no exception, the BN layers are all
fixed in previous works. The reason is that small mini-
batch size leads to inaccurate and unstable BN statistics.
However, using the BN parameters calculated on ImageNet
can lead to sub-optimial performance, and limit the gener-
ation ability of models. Third, the numbers of positive and
negative samples (foreground/background) during training
can be extremely unbalanced for some images. When the
mini-batch size is small, the distribution of these samples
may be noisy for optimization. Table 1 compares the ra-
tio of positive and negative samples between detectors with
small and large mini-batch size at different training epochs.
It demonstrates that the ratio is more imbalanced for the
detector with small mini-batch size, especially during the
early stage of training. Visualization samples are provided
in Figure 2.

3.2. Learning Rate for Large Mini-Batch

The learning rate policy is essential for training a net-
work with large mini-batch, since we would like to shorten
the training time while maintaining accuracy. Therefore, we
first review the loss functions for object detection networks:

L(x,w) =
1

N

NX
i=1

l(xi, w) +
λ

2
||w||22

= l(x,w) + l(w),

(1)

where N is the mini-batch size, l(x,w) is the task spe-
cific loss and l(w) is the regularization loss. For Faster R-
CNN [28] framework and its variants [4, 20, 11], l(xi, w)
consists of RPN prediction loss, RPN bounding-box regres-
sion loss, R-CNN prediction loss, and R-CNN bounding
box regression loss.

Based on the mini-batch stochastic gradient descent
(SGD), a system needs to compute the gradients with re-
spect to weight w, and update them after every iteration.
When the size of mini-batch changes, such as N̂ ← k ·N ,
we expect that the learning rate r is adapted to maintain
the efficiency of training. Previous works [18, 10, 38] use
Linear Scaling Rule, which changes the new learning rate
to r̂ ← k · r. Since one iteration with a large mini-batch
N̂ should match k consistent iterations with a small mini-
batch N , the learning rate r shall also be multiplied by the
same ratio k to counteract the scaling factor N in the loss
function. This is based on the gradient equivalence assump-
tion [10] during the SGD process. This rule has proven to
be effective for image classification, and we empirically find
that this is still applicable for object detection.

Nevertheless, for image classification, each image has
only one label and l(x,w) is a cross-entropy loss. For ob-
ject detection, each image has different number of bounding
box annotations, resulting in various ground-truth distribu-
tions. Therefore, the assumption of gradient equivalence
in [10] may be less likely to hold in object detection, even
when the gradient is stable. Here, we provide an alternative
interpretation in the following.
Variance equivalence. Different from the gradient equiva-
lence assumption, we assume that the variance of gradient
remain the same during k steps. Given the mini-batch size
N , if the gradient of each sample ∇l(xi, w) obeying i.i.d.,
the variance of gradient on l(x,w) is:

Var(∇l(x,wt)) =
1

N2

NX
i=1

Var(
∂l(xi, wt)

∂wt
)

=
1

N2
×
�
N · σ2

l

�
=

1

N
σ2
l .

(2)

Similarly, for the large mini-batch N̂ = k · N , we can get
the following expression:

Var(∇lN̂ (x,wt)) =
1

kN
σ2
l . (3)

Instead of expecting equivalence on weight update, here we
want to maintain the variance of one update in large mini-
batch N̂ equal to k accumulative steps in small mini-batch
N . To achieve this, we have:

Var(r ·
kX
t=1

(∇ltN (x,w))) = r2 · k · Var(∇lN (x,w))

≈ r̂2Var(∇lN̂ (x,w))

(4)

With Equation (2) and (3), the above equality holds if and
only if r̂ = k · r, which gives the same linear scaling rule
for r̂.

Although the final scaling rule is the same, our variance
equivalence assumption Equation (4) is weaker because we
just expect that the large mini-batch training can maintain
equivalent statistics on the gradients. We hope the vari-
ance analysis here can shed light on deeper understanding
of learning rate in wider applications.

Warm-up strategy. As discussed in [10], the linear scaling
rule may not be applicable at the initial stage of the training
because the weights of networks change dramatically. To
address this problem, we adopt Linear Gradual Warm-up
technique. That is, we begin with a small learning rate (e.g.,
r) that allows the training to be activated. Then we increase
the learning rate linearly after every iteration until it reaches
r̂.

The linear gradual warm-up strategy helps the conver-
gence of training. However, as demonstrated in Section 4,
we empirically find that such a strategy is still insufficient
for much larger mini-batch size, e.g., when it exceeds 128.
Next, we propose the Cross-GPU Batch Normalization,
which is the last stepping-stone towards training object de-
tectors with large mini-batch size.

3.3. Cross-GPU Batch Normalization

Batch Normalization [17] is an important technique that
enables the training of deep convolutional neural networks.
Without batch normalization, training such a deep network
will consume much more time or even fail to converge.
However, previous object detection frameworks, such as
FPN [20] and Mask R-CNN [11], are initializes with Im-
ageNet pre-trained models, after which the batch normal-
ization layers are fixed during the whole fine-tuning proce-
dure. In this work, we make an attempt to perform batch
normalization for object detection.

It is worth noting that the input image of classification
network is 224 × 224 or 299 × 299, so a single NVIDIA

Figure 3: Implementation of Cross-GPU Batch Normaliza-
tion. The gray ellipse depicts the synchronization over de-
vices, while the rounded boxes represent paralleled compu-
tation of multiple devices.

TITAN Xp GPU with 12 Gigabytes memory is enough for
32 or more images. In this way, batch normalization can
be computed on each device alone. However, for object de-
tection, a detector needs to detect objects of various scales,
thus higher resolution images are needed as input. In [20],
input of size800 � 800 is used, which limits the number
of possible samples on one device. Thus, we have to per-
form batch normalization crossing multiple GPUs to com-
pute suf�cient statistics from more training samples.

To implement batch normalization across multiple
GPUs, we need to compute the aggregated mean/variance
statistics over all devices. Most existing deep learning
frameworks utilize the batch normalization implementation
in cuDNN [3] that only provides a high-level API without
permitting modi�cation of internal statistics. Therefore we
need to implement batch normalization in terms of prelimi-
nary mathematical expressions and use an “All-Reduce” op-
eration to aggregate the statistics. These �ne-grained ex-
pressions usually cause signi�cant run-time overhead and
the All-Reduce operation is missing in most frameworks.

Our implementation of Cross-GPU Batch Normalization
is sketched in Figure 3. Givenn GPU devices in total, sum
valuesk is �rst computed based on the training examples
assigned to the devicek. By averaging the sum values from
all devices, we obtain the mean value� B for current mini-
batch. This step requires an All-Reduce operation. Then
we calculate the variance for each device and get� 2

B . After
broadcasting� 2

B to each device, we can perform the stan-

Input: Values of inputx on multiple devices
in a minibatch:B =

S n
i =1 Bi , Bi = f x i 1 :::i n g

BN parameters: , �
Output: y = CGBN(x)

1: for i = 1 ; : : : ; n do
2: compute the device sumsi over setB i

3: end for
4: reduce the sets1;:::;n to minibatch mean� B

5: broadcast� B to each device
6: for i = 1 ; : : : ; n do
7: compute the device variance sumvi over setB i

8: end for
9: reduce the setv1;:::;n to minibatch variance� 2

B
10: broadcast� 2

B to each device
11: compute the output:y = x � � Bp

� 2
B + �

+ � over devices

Algorithm 1: Cross-GPU Batch Normalization over a mini-
batchB.

dard normalization byy = x � � Bp
� 2

B + �
+ � . Algorithm 1 gives

the detailed �ow. In our implementation, we use NVIDIA
Collective Communication Library (NCCL) to ef�ciently
perform All-Reduce operation for receiving and broadcast-
ing.

Note that we only perform batch normalization across
GPUs on the same machine. So, we can calculate batch
normalization statistics on 16 images if each GPU can hold
2 images. To perform batch normalization on 32 or 64
images, we applysub-linear memory[2] to save the GPU
memory consumption by slightly compromising the train-
ing speed.

In next section, our experimental results will demon-
strate the positive impacts of CGBN on both convergence
and performance.

4. Experiments

We conduct experiments on the challenging COCO De-
tection Dataset [22], which is split into train, validation,
and test, containing 80 categories and over250; 000 im-
ages. We use ResNet-50 [13] pre-trained on ImageNet [5]
as the backbone network and Feature Pyramid Network
(FPN) [20] as the detection framework. We train the detec-
tors over118; 000 training images and evaluate on5; 000
validation images. We use the SGD optimizer with a mo-
mentum as0:9 and a weight decay as0:0001. The base
learning rate for batch size16 is 0:02. For other mini-batch
size settings, the linear scaling rule described in Section 3.2
is applied. For larger mini-batch size, we use the sublinear
memory technique [2] and distributed training to remedy
the GPU memory constraints.

We use two training policies: 1)normal, where the learn-

Mini-Batch size mmAP Time (h)

16 36.2 33.2
32 36.4 15.1
64 failed –
64 (half learning rate) 36.0 7.5
128 (half learning rate) failed –

Table 2: Comparisons of different mini-batch sizes, without
BN.

ing rate is decreased at epoch 8 and 10 by multiplying0:1,
and the training ends at epoch 11; 2)long, where the learn-
ing rate is decreased at epoch 11 and 14 by multiplying 0.1,
and halved at epoch 17, and the training ends at epoch 18.
We use the normal policy unless speci�ed.

4.1. Large Minibatch Size w/o BN

We start our study on different mini-batch sizes without
batch normalization. More speci�cally, the mini-batch sizes
are set as 16, 32, 64, and 128. For mini-batch sizes of 32, we
observe that the training fails to converge with a certain pos-
sibility, even when we use the warm-up strategy. For mini-
batch size of 64, the training fails every time even with the
warm-up strategy. In order to make the training converge,
we have to lower the learning rate by half. For mini-batch
size of 128, the training fails with both warm-up strategy
and a learning rate which is halved. The results of these
experiments on COCO validation set are shown in Table 2.
We can see that: 1) Training with thge mini-batch size of 32
achieves almost linear acceleration without loss of accuracy,
compared with the baseline using the mini-batch size of 16;
2) Training with a half learning rate and a mini-batch size of
64 results in a drop of performance; 3) Training is harder or
impossible when the mini-batch size and the learning rate
are larger, even with the warm-up strategy.

4.2. Large Minibatch Size w/ CGBN

We also conduct experiments in which we train the mod-
els with batch normalization. Our �rst key �nding is thatall
experiments are more easily to converge when we use warm-
up strategy and CGBN, no matter of the mini-batch size.
This is remarkable because we do not have to worry about
the possible loss of accuracy caused by using a smaller
learning rate.

The main results are summarized in Table 3. We have
the following observations.

First, with the growth of mini-batch size, the accuracy
remains the same, which is consistently better that the base-
line (16-base). Meanwhile, training with a larger mini-batch
size always leads to a shorter training procedure. For in-
stance, the experiment with a mini-batch size of256on128

Batch size BN size # of GPUs mmAP Time(h)

16-base 0 8 36.2 33.2
2 2 2 31.5 131.2
4 4 4 34.9 91.4
8 8 8 35.9 71.5
16 2 8 31.0 45.6
16 16 8 37.0 39.5
32 32 8 37.3 45.5
64 64 8 35.3 40.9
64 32 16 37.1 19.6
64 16 32 37.1 11.2
128 32 32 37.1 11.3
128 16 64 37.0 6.5
256 32 64 37.1 7.2
256 16 128 37.1 4.1

16 (long) 16 8 37.7 65.2
32 (long) 32 8 37.8 60.3
64 (long) 32 16 37.6 30.1
128 (long) 32 32 37.6 15.8
256 (long) 32 64 37.7 9.4
256 (long) 16 128 37.7 5.4

Table 3: Comparisons of training with different mini-batch
sizes, BN sizes (the number of images used for calculat-
ing statistics), GPU numbers, and training policies. “long”
means that we apply the long training policy. When the BN
size� 32, the sublinear memory is applied and thus slightly
reduces training speed. Overall, the large mini-batch size
with BN not only speeds up the training, but also improves
the accuracy.

GPUs can be trained in only 4.1 hours, which is a8� accel-
eration compared with the33:2 hours baseline.

Second, the best batch normalization scale,i.e., the num-
ber of images for estimating batch normalization statistics,
is 32. With too few training samples,e.g., less or equal
to 8 samples, the batch normalization statistics are highly
inaccurate, resulting in a drop in performance. However,
when we increase the batch normalization scale to 64, the
performance also drops. We conjure that this is due to the
mismatch between image classi�cation and object detection
tasks.

Third, we �nd that when a model is trained longer, the
performance is slightly boosted. The results are shown in
the bottom of Table 3. For example, “32 (long)” is better
that its counterpart (37.8 v.s. 37.3). When the mini-batch
size is larger than 16, the �nal results are almost identical,
which is a sign of good convergence.

We also illustrate epoch-by-epoch mmAP curves of the
model 16 (long) and 256 (long) in Figure 4. 256 (long) is
worse at early epochs but catches up 16 (long) at the last

Figure 4: Validation accuracy of 16 (long) and 256 (long)
detectors, using the long training policy. The BN sizes are
the same in two detectors. The vertical dashed lines indicate
the moments of learning rate decay.

stage (after second learning rate decay). This observation is
different from those in image classi�cation [10, 38], where
both the accuracy curves and convergent scores are very
close between different batch size settings. We leave the
understanding of this phenomenon as the future work.

name mmAP mmAR
DANet 45.7 62.7
Trimps-Soushen+QINIU 48.0 65.4
bharatumd 48.1 64.8
FAIR Mask R-CNN [11] 50.3 66.1
MSRA 50.4 69.0
UCenter 51.0 67.9
MegDet (Ensemble) 52.5 69.0

Table 4: Result of (enhanced) MegDet on test-dev of COCO
dataset.

5. Concluding Remarks

We have presented a large mini-batch size detector,
which achieved better accuracy in much shorter time. This
is remarkable because our research cycle has been greatly
accelerated. As a result, we have obtained 1st place of
COCO 2017 detection challenge. The details are in Ap-
pendix.

Appendix

Based on our MegDet, we integrate the techniques in-
cluding OHEM [32], atrous convolution [39, 1], stronger
base models [37, 15], large kernel [25], segmentation su-
pervision [24, 31], diverse network structure [9, 29, 34],
contextual modules [19, 6], ROIAlign [11] and multi-scale
training and testing for COCO 2017 Object Detection Chal-
lenge. We obtained50.5mmAP on validation set, and50.6
mmAP on the test-dev. The ensemble of four detectors �-
nally achieved52.5. Table 4 summarizes the entries from
the leaderboard of COCO 2017 Challenge. Figure 5 gives
some exemplar results.

References

[1] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and
A. L. Yuille. Deeplab: Semantic image segmentation with
deep convolutional nets, atrous convolution, and fully con-
nected crfs.arXiv preprint arXiv:1606.00915, 2016. 7

[2] T. Chen, B. Xu, C. Zhang, and C. Guestrin. Training
deep nets with sublinear memory cost.arXiv preprint
arXiv:1604.06174, 2016. 5

[3] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran,
B. Catanzaro, and E. Shelhamer. cudnn: Ef�cient primitives
for deep learning.arXiv preprint arXiv:1410.0759, 2014. 5

[4] J. Dai, Y. Li, K. He, and J. Sun. R-fcn: Object detection
via region-based fully convolutional networks. InAdvances
in neural information processing systems, pages 379–387,
2016. 1, 2, 4

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. Imagenet: A large-scale hierarchical image database.
In Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, pages 248–255. IEEE, 2009. 3,
5

[6] S. Gidaris and N. Komodakis. Object detection via a multi-
region and semantic segmentation-aware cnn model. InPro-
ceedings of the IEEE International Conference on Computer
Vision, pages 1134–1142, 2015. 7

[7] R. Girshick. Fast r-cnn. InProceedings of the IEEE inter-
national conference on computer vision, pages 1440–1448,
2015. 1, 2

[8] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-
ture hierarchies for accurate object detection and semantic
segmentation. InProceedings of the IEEE conference on
computer vision and pattern recognition, pages 580–587,
2014. 1, 2

[9] I. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and
Y. Bengio. Maxout networks. InInternational Conference
on Machine Learning, pages 1319–1327, 2013. 7

[10] P. Goyal, P. Dolĺar, R. Girshick, P. Noordhuis,
L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and K. He.
Accurate, large minibatch sgd: Training imagenet in 1 hour.
arXiv preprint arXiv:1706.02677, 2017. 1, 2, 3, 4, 7

[11] K. He, G. Gkioxari, P. Dollar, and R. Girshick. Mask r-cnn.
In The IEEE International Conference on Computer Vision
(ICCV), Oct 2017. 1, 2, 4, 7

Figure 5: Illustrative examples for our MegDet on COCO dataset.

