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Abstract
Semantic understanding of visual scenes is one of the holy grails of computer vision. Despite efforts of the community in
data collection, there are still few image datasets covering a wide range of scenes and object categories with pixel-wise
annotations for scene understanding. In this work, we present a densely annotated dataset ADE20K, which spans diverse
annotations of scenes, objects, parts of objects, and in some cases even parts of parts. Totally there are 25k images of the
complex everyday scenes containing a variety of objects in their natural spatial context. On average there are 19.5 instances
and 10.5 object classes per image. Based on ADE20K, we construct benchmarks for scene parsing and instance segmentation.
We provide baseline performances on both of the benchmarks and re-implement state-of-the-art models for open source. We
further evaluate the effect of synchronized batch normalization and find that a reasonably large batch size is crucial for the
semantic segmentation performance. We show that the networks trained on ADE20K are able to segment a wide variety of
scenes and objects.

Keywords Scene understanding · Semantic segmentation · Instance segmentation · Image dataset · Deep neural networks

1 Introduction

Semantic understanding of visual scenes is one of the holy
grails of computer vision. The emergence of large-scale
image datasets like ImageNet (Russakovsky et al. 2015),
COCO (Lin et al. 2014) and Places (Zhou et al. 2014), along
with the rapid development of the deep convolutional neural
network (CNN) approaches, has brought great advancements
to visual scene understanding. Nowadays, given a visual
scene of a living room, a robot equipped with a trained CNN
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can accurately predict the scene category. However, to freely
navigate in the scene and manipulate the objects inside, the
robot has farmore information to digest from the input image:
it has to recognize and localize not only the objects like sofa,
table, cup, and TV, but also their parts, e.g., a seat of a sofa
or a handle of a cup, to allow proper manipulation, as well
as to segment the stuff like floor, wall and ceiling for spatial
navigation.

Recognizing and segmenting objects and stuff at pixel
level remains oneof the keyproblems in sceneunderstanding.
Going beyond the image-level recognition, the pixel-level
scene understanding requires a much denser annotation of
scenes with a large set of objects. However, the current
datasets have a limited number of objects [e.g., COCO (Lin
et al. 2014), Pascal (Everingham et al. 2010)] and in many
cases those objects are not the most common objects that
one encounters in the world (like frisbees or baseball bats),
or the datasets only cover a limited set of scenes [e.g.,
Cityscapes (Cordts et al. 2016)]. Some notable exceptions
are Pascal-Context (Mottaghi et al. 2014) and the SUN
database (Xiao et al. 2010). However, Pascal-Context con-
tains scenes still primarily focused on 20 object classes,while
SUN has noisy labels at object level.

The motivation of this work is to construct a dataset that
has densely annotated images (every pixel has a semantic
label) with a large and unrestricted open-vocabulary. The
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images in our dataset are manually segmented in great detail,
covering a diverse set of scene, object and object part cat-
egories. The challenge for collecting such annotations is
finding reliable annotators, as well as the fact that labeling
is difficult if the class list is not defined in advance. On the
other hand, open vocabulary naming also suffers from nam-
ing inconsistencies across different annotators. In contrast,
our dataset was annotated by a single expert annotator, pro-
viding extremely detailed and exhaustive image annotations.
On average, our annotator labeled 29 annotation segments
per image, compared to 16 segments per image labeled by
external annotators (like workers from Amazon Mechani-
cal Turk). Furthermore, the data consistency and quality are
much higher than that of external annotators. Figure 1 shows
examples from our dataset.

The preliminary result of this work is published at Zhou
et al. (2017). Compared to the previous conference paper,
we include more description of the dataset, more baseline
results on the scene parsing benchmark, the introduction of
the instance segmentation benchmark and its baseline results,
as well as the effect of synchronized batch norm and the joint
training of objects and parts. We also include the contents
of the Places Challenges that we hosted at ECCV’16 and
ICCV’17 and the analysis on the challenge results.

The sections of this work are organized as follows. In
Sect. 3 we describe the construction of the ADE20K dataset
and its statistics. In Sect. 4 we introduce the two pixel-
wise scene understanding benchmarks that we build upon
ADE20K: scene parsing and instance segmentation.We train
and evaluate several baseline networks on the benchmarks.
We also re-implement and open-source several state-of-the-
art scene parsing models and evaluate the effect of batch

normalization size. In Sect. 5 we introduce the Places Chal-
lenges at ECCV’16 and ICCV’17 based on the benchmarks
of the ADE20K, as well as the qualitative and quantitative
analysis on the challenge results. In Sect. 6 we train a net-
work to jointly segment objects and their parts. Section 7
further explores the applications of the scene parsing net-
works for hierarchical semantic segmentation and automatic
scene content removal. Section 8 concludes this work.

2 RelatedWork

Many datasets have been collected for the purpose of seman-
tic understanding of scenes.We review the datasets according
to the level of details of their annotations, then briefly go
through the previous work of semantic segmentation net-
works.

Object Classification/Detection Datasets Most of the
large-scale datasets typically only contain labels at the image
level or provide bounding boxes. Examples include Ima-
geNet (Russakovsky et al. 2015), Pascal (Everingham et al.
2010), and KITTI (Geiger et al. 2012). ImageNet has the
largest set of classes, but contains relatively simple scenes.
Pascal and KITTI are more challenging and have more
objects per image, however, their classes and scenes aremore
constrained.

Semantic Segmentation Datasets Existing datasets with
pixel-level labels typically provide annotations only for a
subset of foreground objects [20 in PASCALVOC (Evering-
hamet al. 2010) and 91 inMicrosoft COCO (Lin et al. 2014)].
Collecting dense annotations where all pixels are labeled
is much more challenging. Such efforts include Pascal-

Fig. 1 Images in ADE20K dataset are densely annotated in detail with
objects and parts. The first row shows the sample images, the second row
shows the annotation of objects, and the third row shows the annotation
of object parts. The color scheme encodes both the object categories and

object instances, in which different object categories have large color
difference while different instances from the same object category have
small color difference (e.g., different person instances in first image
have slightly different colors)
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Context (Mottaghi et al. 2014), NYU Depth V2 (Nathan Sil-
berman and Fergus 2012), SUN database (Xiao et al.
2010), SUN RGB-D dataset (Song et al. 2015), CityScapes
dataset (Cordts et al. 2016), and OpenSurfaces (Bell et al.
2013, 2015). Recently COCO stuff dataset (Caesar et al.
2017) provides additional stuff segmentation complemen-
tary to the 80 object categories in COCO dataset, while
COCO attributes dataset (Patterson and Hays 2016) anno-
tates attributes for some objects in COCO dataset. Such a
dataset with progressive enhancement of diverse annotations
over the years makes great progress to modern development
of image datasets.

Datasets with Objects, Parts and Attributes Two datasets
were released that go beyond the typical labeling setup by
also providing pixel-level annotation for the object parts, i.e.,
Pascal-Part dataset (Chen et al. 2014), or material classes,
i.e., OpenSurfaces (Bell et al. 2013, 2015). We advance this
effort by collecting very high-resolution images of a much
wider selection of scenes, containing a large set of object
classes per image.We annotated both stuff and object classes,
for which we additionally annotated their parts, and parts of
these parts. We believe that our dataset, ADE20K, is one of
the most comprehensive datasets of its kind. We provide a
comparison between datasets in Sect. 3.6.

Semantic Segmentation Models With the success of con-
volutional neural networks (CNN) for image classification
(Krizhevsky et al. 2012), there is growing interest for seman-
tic pixel-wise labeling using CNNs with dense output, such
as the fully CNN (Long et al. 2015), deconvolutional neural
networks (Noh et al. 2015), encoder-decoder SegNet (Badri-
narayanan et al. 2017), multi-task network cascades (Dai
et al. 2016), and DilatedVGG (Chen et al. 2016; Yu and
Koltun 2016). They are benchmarked on Pascal dataset with
impressive performance on segmenting the 20 object classes.
Some of them (Long et al. 2015; Badrinarayanan et al. 2017;
Zhao et al. 2017a) are evaluated on Pascal Context (Mottaghi
et al. 2014) or SUNRGB-Ddataset (Song et al. 2015) to show
the capability to segment more object classes in scenes. Joint
stuff and object segmentation is explored in Dai et al. (2015)
which uses pre-computed superpixels and feature masking to
represent stuff. Cascade of instance segmentation and catego-
rization has been explored in Dai et al. (2016). A multiscale
pyramid pooling module is proposed to improve the scene
parsing (Zhao et al. 2017b). A recent multi-task segmenta-
tion networkUperNet is proposed to segment visual concepts
from different levels (Xiao et al. 2018).

3 ADE20K: Fully Annotated Image Dataset

In this section, we describe the construction of our ADE20K
dataset and analyze its statistics.

3.1 Image Annotation

For our dataset, we are interested in having a diverse set of
scenes with dense annotations of all the presenting visual
concepts. The visual concepts can be: (1) discrete object
which is a thing with a well-defined shape, e.g., car, person;
(2) stuffwhich contains amorphous background regions, e.g.,
grass, sky; or (3) object part, which is a component of some
existing object instance which has some functional meaning,
such as head or leg. Images come from the LabelMe (Rus-
sell et al. 2008), SUN datasets (Xiao et al. 2010), and
Places (Zhou et al. 2014) and were selected to cover the
900 scene categories defined in the SUN database. Images
were annotated by a single expert worker using the LabelMe
interface (Russell et al. 2008). Figure 2 shows a snapshot of
the annotation interface and one fully segmented image. The
worker provided three types of annotations: object and stuff
segments with names, object parts, and attributes. All object
instances are segmented independently so that the dataset
could be used to train and evaluate detection or segmenta-
tion algorithms.

Segments in the dataset are annotated via polygons. Given
that the objects appearing in the dataset are fully annotated,
even in the regions where they are occluded, there are multi-
ple areas where the polygons from different objects overlap.
In order to convert the annotated polygons into a segmenta-
tion mask, these are sorted in every image by depth layers.
Background classes like sky or wall are set as the farthest
layer. The rest of depths of objects are set as follows: when a
polygon is fully contained inside another polygon, the object
from the inner polygon is given a closer depth layer. When
objects only partially overlap, we look at the region of inter-
section between the two polygons, and set the closest object
as the one whose polygon has more points in the region of
intersection.Once objects have been sorted, the segmentation
mask is constructed by iterating over the objects in decreas-
ing depth to ensure that object parts never occlude whole
objects and no object is occluded by its parts.

Datasets such as COCO (Lin et al. 2014), Pascal (Ever-
ingham et al. 2010) or Cityscapes (Cordts et al. 2016) start by
defining a set of object categories of interest. However, when
labeling all the objects in a scene, working with a predefined
list of objects is not possible as new categories appear fre-
quently (see Fig. 6d). Here, the annotator created a dictionary
of visual concepts where new classes were added constantly
to ensure consistency in object naming.

Object parts are associatedwith object instances.Note that
parts can have parts too, and these associations are labeled
as well. For example, the rim is a part of a wheel, which in
turn is part of a car. A knob is a part of a door that can be
part of a cabinet. A subset of the part hierarchy tree is shown
in Fig. 3 with a depth of 4.
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Fig. 2 Annotation interface, the list of the objects and their associated parts in the image
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Fig. 3 Section of the relation tree of objects and parts for from dataset. Numbers indicate the number of instances for each object. The full relation
tree is available at the dataset web-page
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Fig. 4 Analysis of annotation consistency. Each column shows an
image and two segmentations done by the same annotator at different
times. Bottom row shows the pixel discrepancy when the two seg-
mentations are subtracted, while the number at the bottom shows the
percentage of pixels with the same label. On average across all re-
annotated images, 82.4% of pixels got the same label. In the example in

the first column the percentage of pixels with the same label is relatively
low because the annotator labeled the same region as snow and ground
during the two rounds of annotation. In the third column, there were
many objects in the scene and the annotator missed some between the
two segmentations

3.2 Dataset Summary

After annotation, there are 20,210 images in the training set,
2000 images in the validation set, and 3000 images in the
testing set. There are in total 3169 class labels annotated,
among which 2693 are object and stuff classes while 476 are
object part classes. All the images are exhaustively annotated
with objects.Many objects are also annotatedwith their parts.
For each object there is additional information about whether
it is occluded or cropped, and other attributes. The images
in the validation set are exhaustively annotated with parts,
while the part annotations are not exhaustive over the images
in the training set. Sample images and annotations from the
ADE20K dataset are shown in Fig. 1.

3.3 Annotation Consistency

Defining a labeling protocol is relatively easywhen the label-
ing task is restricted to a fixed list of object classes. However,
it becomes challenging when the class list is open-ended. As
the goal is to label all the objects within each image, the list of
classes grows unbounded. Many object classes appear only
a few times across the entire collection of images. However,
those rare object classes cannot be ignored as they might be
important elements for the interpretation of the scene. Label-
ing in these conditions becomes difficult because we need to
keep a growing list of all the object classes in order to have a

consistent naming across the entire dataset. Despite the best
effort of the annotator, the process is not free from noise.

To analyze the annotation consistency we took a subset
of 61 randomly chosen images from the validation set, then
asked our annotator to annotate them again (there is a time
difference of six months). One expects that there are some
differences between the two annotations. A few examples
are shown in Fig. 4. On average, 82.4% of the pixels got the
same label. The remaining 17.6% of pixels had some errors
for which we grouped into three error types as follows:

– Segmentation qualityVariations in the quality of segmen-
tation and outlining of the object boundary. One typical
source of error arises when segmenting complex objects
such as buildings and trees, which can be segmented with
different degrees of precision. This type of error emerges
in 5.7% of the pixels.

– Object naming Differences in object naming (due to
ambiguity or similarity between concepts, for instance,
calling a big car a car in one segmentation and a truck
in the another one, or a palm tree a tree. This naming
issue emerges in 6.0% of the pixels. These errors can be
reduced by defining a very precise terminology, but this
becomes much harder with a large growing vocabulary.

– Segmentation quantityMissing objects in one of the two
segmentations. There is a very large number of objects in
each image and some images might be annotated more
thoroughly than others. For example, in the third column
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Fig. 5 a Object classes sorted by frequency. Only the top 270 classes
with more than 100 annotated instances are shown. 68 classes have
more than a 1000 segmented instances. b Frequency of parts grouped
by objects. There are more than 200 object classes with annotated parts.
Only objects with 5 or more parts are shown in this plot (we show at

most 7 parts for each object class). c Objects ranked by the number of
scenes of which they are part. d Object parts ranked by the number of
objects of which they are part. e Examples of objects with doors. The
bottom-right image is an example where the door does not behave as a
part

of Fig. 4 the annotator missed some small objects in dif-
ferent annotations. Missing labels account for 5.9% of
the error pixels. A similar issue existed in segmentation
datasets such as the Berkeley Image segmentation dataset
(Martin et al. 2001).

Themedian error values for the three error types are: 4.8%,
0.3%, and 2.6%, which shows that the mean value is dom-
inated by a few images, and that the most common type of
error is segmentation quality.

To further compare the annotation done by our single
expert annotator and the AMT-like annotators, 20 images
from the validation set are annotated by two invited exter-
nal annotators, both with prior experience in image labeling.
The first external annotator had 58.5% of inconsistent pix-
els compared to the segmentation provided by our annotator,
and the second external annotator had 75% of the inconsis-
tent pixels. Many of these inconsistencies are due to the poor

quality of the segmentations provided by external annotators
[as it has been observed with AMT which requires multi-
ple verification steps for quality control (Lin et al. 2014)].
For the best external annotator (the first one), 7.9% of pix-
els have inconsistent segmentations (just slightly worse than
our annotator), 14.9% have inconsistent object naming and
35.8% of the pixels correspond to missing objects, which
is due to the much smaller number of objects annotated by
the external annotator in comparison with the ones annotated
by our expert annotator. The external annotators labeled on
average 16 segments per image while our annotator provided
29 segments per image.

3.4 Dataset Statistics

Figure 5a shows the distribution of ranked object frequencies.
The distribution is similar to a Zipf’s law and is typically
found when objects are exhaustively annotated in images
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(a) (b) (c) (d) (e)

Fig. 6 aMode of the object segmentations contains sky, wall, building
and floor. b Histogram of the number of segmented object instances
and classes per image. c Histogram of the number of segmented part
instances and classes per object. d Number of classes as a function of

segmented instances (objects and parts). The squares represent the cur-
rent state of the dataset. e Probability of seeing a new object (or part)
class as a function of the number of instances

Table 1 Comparison with existing datasets with semantic segmentation

Images Obj. inst. Obj. classes Part inst. Part classes Obj. classes per image

COCO 123,287 886,284 91 0 0 3.5

ImageNeta 476,688 534,309 200 0 0 1.7

NYU Depth V2 1,449 34,064 894 0 0 14.1

Cityscapes 25,000 65,385 30 0 0 12.2

SUN 16,873 313,884 4479 0 0 9.8

OpenSurfaces 22,214 71,460 160 0 0 N/A

PascalContext 10,103 ∼ 104,398b 540 181,770 40 5.1

ADE20K 22,210 434,826 2693 175,961 476 9.9

aHas only bounding boxes (no pixel-level segmentation). Sparse annotations
bPascalContext dataset does not have instance segmentation. In order to estimate the number of instances, we find connected components (having
at least 150 pixels) for each class label

(Spain and Perona 2010; Xiao et al. 2010). They differ from
the ones from datasets such as COCO or ImageNet where
the distribution is more uniform resulting from manual bal-
ancing.

Figure 5b shows the distribution of annotated parts
grouped by the objects to which they belong and sorted by
frequency within each object class. Most object classes also
have a non-uniform distribution of part counts. Figure 5c, d
show how objects are shared across scenes and how parts
are shared by objects. Figure 5e shows the variability in the
appearances of the part door.

The mode of the object segmentations is shown in Fig. 6a
and contains the four objects (from top to bottom): sky, wall,
building and floor. When using simply the mode to seg-
ment the images, it gets, on average, 20.9% of the pixels of
each image right. Figure 6b shows the distribution of images
according to the number of distinct classes and instances.
On average there are 19.5 instances and 10.5 object classes
per image, larger than other existing datasets (see Table 1).
Figure 6c shows the distribution of parts.

As the list of object classes is not predefined, there are new
classes appearing over time of annotation. Figure 6d shows

the number of object (and part) classes as the number of
annotated instances increases. Figure 6e shows the probabil-
ity that instance n+1 is a new class after labeling n instances.
The more segments we have, the smaller the probability that
we will see a new class. At the current state of the dataset,
we get one new object class every 300 segmented instances.

3.5 Object-Part Relationships

We analyze the relationships between the objects and object
parts annotated in ADE20K. In the dataset, 76% of the object
instances have associated object parts, with an average of 3
parts per object. The classwith themost parts isbuilding,with
79 different parts. On average, 10% of the pixels correspond
to object parts. A subset of the relation tree between objects
and parts can be seen in Fig. 3.

The information about objects and their parts provides
interesting insights. For instance, we can measure in what
proportion one object is part of another to reason about how
strongly tied these are. For the object tree, the most common
parts are trunk or branch, whereas the least common are fruit,
flower or leaves.
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The object-part relationships can also be used to measure
similarities among objects and parts, providing information
about objects tending to appear together or sharing similar
affordances. We measure the similarity between two parts as
the common objects each one is part of. The most similar
part to knob is handle, sharing objects such as drawer, door
or desk. Objects can similarly be measured by the parts they
have in common. As such, the most similar objects to chair
are armchair, sofa and stool, sharing parts such as rail, leg
or seat base.

3.6 Comparison with Other Datasets

WecompareADE20Kwith existingdatasets inTable 1.Com-
pared to the largest annotated datasets, COCO (Lin et al.
2014) and Imagenet (Russakovsky et al. 2015), our dataset
comprises of much more diverse scenes, where the aver-
age number of object classes per image is 3 and 6 times
larger, respectively. With respect to SUN (Xiao et al. 2010),
ADE20K is roughly 35% larger in terms of images and object
instances. However, the annotations in our dataset are much
richer since they also include segmentation at the part level.
Such annotation is only available for the Pascal-Context/Part
dataset (Mottaghi et al. 2014; Chen et al. 2014) which con-
tains 40 distinct part classes across 20 object classes. Note
that we merged some of their part classes to be consistent
with our labeling (e.g., we mark both left leg and right leg
as the same semantic part leg). Since our dataset contains
part annotations for a much wider set of object classes, the
number of part classes is almost 9 times larger in our dataset.

An interesting fact is that any image in ADE20K con-
tains at least 5 objects, and the maximum number of object
instances per image reaches 273, and 419 instances, when
counting parts as well. This shows the high annotation com-
plexity of our dataset.

4 Pixel-Wise Scene Understanding
Benchmarks

Based on the data of the ADE20K, we construct two bench-
marks for pixel-wise scene understanding: scene parsing and
instance segmentation:

– Scene parsing Scene parsing is to segment the whole
image densely into semantic classes, where each pixel is
assigned a class label such as the region of tree and the
region of building.

– Instance segmentation Instance segmentation is to detect
the object instances inside an image and further gener-
ate the precise segmentation masks of the objects. Its
difference compared to the task of scene parsing is that
in scene parsing there is no instance notion for the seg-

mented regions, instead in instance segmentation if there
are three persons in a scene, the network is required to
segment each one of the person regions.

We introduce the details of each task and the baseline
models we train as below.

4.1 Scene Parsing Benchmark

We select the top 150 categories ranked by their total pixel
ratios1 in the ADE20K dataset and build a scene parsing
benchmark of ADE20K, termed as SceneParse150. Among
the 150 categories, there are 35 stuff classes (i.e., wall, sky,
road) and 115 discrete object classes (i.e., car, person, table).
The annotated pixels of the 150 classes occupy 92.75% of
all the pixels of the dataset, where the stuff classes occupy
60.92%, and discrete object classes occupy 31.83%.

We map the WordNet synsets with each one of the object
names, then build up a WordNet tree through the hypernym
relations of the 150 categories shown inFig. 7.Wecan see that
these objects form several semantic clusters in the tree, such
as the furniture synset node containing cabinet, desk, pool
table, and bench, the conveyance node containing car, truck,
boat, and bus, as well as the living thing node containing
shrub, grass, flower, and person. Thus, the structured object
annotation given in the dataset bridge the image annotation
to a wider knowledge base.

As for baseline networks for scene parsing on our bench-
mark, we train several semantic segmentation networks:
SegNet (Badrinarayanan et al. 2017), FCN-8s (Long et al.
2015), DilatedVGG, DilatedResNet (Chen et al. 2016; Yu
and Koltun 2016), two cascade networks proposed in Zhou
et al. (2017) where the backbone models are SegNet and
DilatedVGG. We train these models on NVIDIA Titan X
GPUs.

Results are reported in four metrics commonly used for
semantic segmentation (Long et al. 2015):

– Pixel accuracy indicates the proportion of correctly clas-
sified pixels;

– Mean accuracy indicates the proportion of correctly clas-
sified pixels averaged over all the classes.

– Mean IoU indicates the intersection-over-union between
the predicted and ground-truth pixels, averaged over all
the classes.

– Weighted IoU indicates the IoU weighted by the total
pixel ratio of each class.

1 As the original images in the ADE20K dataset have various sizes, for
simplicity we rescale the large-sized images to make their minimum
heights or widths as 512 in the SceneParse150 benchmark.
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Fig. 7 Wordnet tree constructed from the 150objects in theSceneParse150benchmark.Clusters inside thewordnet tree represent various hierarchical
semantic relations among objects

Table 2 Baseline performance
on the validation set of
SceneParse150

Networks Pixel Acc. (%) Mean Acc. (%) Mean IoU Weighted IoU

FCN-8s 71.32 40.32 0.2939 0.5733

SegNet 71.00 31.14 0.2164 0.5384

DilatedVGG 73.55 44.59 0.3231 0.6014

DilatedResNet-34 76.47 45.84 0.3277 0.6068

DilatedResNet-50 76.40 45.93 0.3385 0.6100

Cascade-SegNet 71.83 37.90 0.2751 0.5805

Cascade-DilatedVGG 74.52 45.38 0.3490 0.6108

Since some classes like wall and floor occupy far more
pixels of the images, pixel accuracy is biased to reflect the
accuracy over those few large classes. Instead, mean IoU
reflects how accurately the model classifies each discrete
class in the benchmark. The scene parsing data and the devel-
opment toolbox are released in the Scene Parsing Benchmark
website.2

The segmentation performance of the baseline networks
on SceneParse150 is listed in Table 2. Among the baselines,
the networks based on dilated convolutions achieve better
results in general than FCN and SegNet. Using the cascade
framework, the performance is further improved. In terms
of mean IoU, Cascade-SegNet and Cascade-DilatedVGG
outperform SegNet and DilatedVGG by 6% and 2.5%,
respectively.

Qualitative scene parsing results from the validation set
are shown in Fig. 8. We observe that all the baseline net-
works can give correct predictions for the common, large
object and stuff classes, the difference in performance comes
mostly from small, infrequent objects and howwell they han-

2 http://sceneparsing.csail.mit.edu.

dle details.We further plot the IoU performance of all the 150
categories given by the baseline model DilatedResNet-50 in
Fig. 9. We can see that the best segmented categories are
stuffs like sky, building and road; the worst segmented cate-
gories are objects that are usually small and have few pixels,
like blanket, tray and glass.

4.2 Open-Sourcing the State-of-the-Art Scene
ParsingModels

Since the introduction of SceneParse150 firstly in 2016,
it has become a standard benchmark for evaluating new
semantic segmentation models. However, the state-of-the-art
models are in different libraries (Caffe, PyTorch, Tensor-
flow) while training code of some models are not released,
whichmakes it hard to reproduce the original results reported
in the paper. To benefit the research community, we re-
implement several state-of-the-art models in PyTorch and
open-source them.3 Particularly, we implement: (1) the plain

3 Re-implementation of the state-of-the-art models are released at
https://github.com/CSAILVision/semantic-segmentation-pytorch.
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Fig. 8 Ground-truths, scene parsing results given by the baseline networks. All networks can give correct predictions for the common, large object
and stuff classes, the difference in performance comes mostly from small, infrequent objects and how well they handle details

dilated segmentation network which uses the dilated con-
volution Yu and Koltun (2016); (2) PSPNet proposed in
Zhao et al. (2017b), which introduces Pyramid PoolingMod-
ule (PPM) to aggregate multi-scale contextual information
in the scene; (3) UPerNet proposed in Xiao et al. (2018)
which adopts architecture like Feature Pyramid Network
(FPN) (Lin et al. 2017) to incorporate multi-scale context

more efficiently. Table 3 shows results on the validation
set of SceneParse150. Compared to plain DilatedResNet,
PPM and UPerNet architectures improve mean IoU by
3–7%, and pixel accuracy by 1–2%. The superior perfor-
mance shows the importance of context in the scene parsing
task.
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Fig. 9 Plot of scene parsing performance (IoU) on the 150 categories achieved by DilatedResNet-50 model. The best segmented categories are
stuff, and the worst segmented categories are objects that are usually small and have few pixels

Table 3 Re-implementation of state-of-the art models on the validation
set of SceneParse150

Networks Pixel Acc. (%) Mean IoU

DilatedResNet-18 77.41 0.3534

DilatedResNet-50 77.53 0.3549

DilatedResNet-18 + PPM (Zhao
et al. 2017b)

78.64 0.3800

DilatedResNet-50 + PPM (Zhao
et al. 2017b)

80.23 0.4204

DilatedResNet-101 + PPM (Zhao
et al. 2017b)

80.91 0.4253

UPerNet-50 (Xiao et al. 2018) 80.23 0.4155

UPerNet-101 (Xiao et al. 2018) 81.01 0.4266

PPM Pyramid Pooling Module

4.3 Effect of Batch Normalization for Scene Parsing

Anoverwhelmingmajority of semantic segmentationmodels
are fine-tuned from a network trained on ImageNet (Rus-
sakovsky et al. 2015), the same asmost of the object detection
models (Ren et al. 2015; Lin et al. 2017; He et al. 2017).
There has been work (Peng et al. 2018) exploring the effects
of the size of batch normalization (BN) (Ioffe and Szegedy
2015). The authors discovered that, if a network is trained
with BN, only by a sufficiently large batch size of BN can
the network achieve state-of-the-art performance. We con-
duct control experiments on ADE20K to explore the issue in
terms of semantic segmentation.Our experiments show that a
reasonably large batch size is essential formatching the high-
est score of the-state-or-the-art models, while a small batch
size such as 2, shown in Table 4, lower the score of the model
significantly by 5%. Thus training with a single GPU with
limited RAM or with multiple GPUs under unsynchronized
BN is unable to reproduce the best reported numbers. The
possible reason is that the BN statics, i.e., mean and standard
variance of activations may not be accurate when the batch
size is not sufficient.

Our baseline framework is the PSPNet with a dilated
ResNet-50 as the backbone. Besides those BN layers in the

Table 4 Comparisons of models trained with various batch normaliza-
tion settings

BN status Batch size BN size Pixel Acc. (%) Mean IoU

Synchronized 16 16 79.73 0.4126

8 8 80.05 0.4158

4 4 79.71 0.4119

2 2 75.26 0.3355

Unsynchronized 16 2 75.28 0.3403

Frozen 16 N/A 78.32 0.3809

8 N/A 78.29 0.3793

4 N/A 78.34 0.3833

2 N/A 78.81 0.3856

The framework used is aDilatedResNet-50with PyramidPoolingMod-
ule

ResNet, BN is also used in the PPM. The baseline frame-
work is trained with 8 GPUs and 2 images on each GPU.
We adopt synchronized BN for the baseline network, i.e., the
BN size should be the same as the batch size. Besides the
synchronized BN setting, we also report the unsynchronized
BN setting and frozen BN setting. The former onemeans that
the BN size is the number of images on each GPU; the lat-
ter one means that the BN layers are frozen in the backbone
network, and removed from the PPM. The training iterations
and learning rate are set to 100k and 0.02 for the baseline,
respectively. For networks trained under the frozen BN set-
ting, the learning rate for the network with 16 batch size is
set to 0.004 to prevent gradient explosion. And for networks
with batch size smaller than 16, we both linearly decrease the
learning rate and increase the training iterations according to
previous works (Goyal et al. 2017). Differently from Table 3,
the results are obtained w/o multi-scale testing.

We report the results in Table 4. In general, we empir-
ically find that using BN layers with a sufficient BN size
leads to better performance. The model with batch size and
BN size as 16 (line 2) outperforms the one with batch size
16 and frozen BN (line 7) by 1.41% and 3.17% in terms of
Pixel Acc. andMean IoU respectively.Wewitness negligible
changes of performance when batch (and BN) size changes
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Fig. 10 Instance number per object in instance segmentation benchmark. All the objects except ship have more than 100 instances

in the range from 4 to 16 under synchronized BN setting
(line 2–4). However, when the BN size drops to 2, the per-
formance downgrades significantly (line 5). Thus a BN size
of 4 is the inflection point in our experiments. This finding
is different from the finding for object detection Peng et al.
(2018), in which the inflection point is at a BN size of 16. We
conjecture that it is due to images for semantic segmentation
are densely annotated, different from those for object detec-
tion with bounding-box annotations. Therefore it is easier for
semantic segmentation networks to obtain more accurate BN
statistics with fewer images.

When we experiment with unsynchronized BN setting,
i.e., we increase the batch size but do not change the BN size
(line 6), the model yields almost identical result compared
with the one with the same BN size but smaller batch size
(line 5). Also, when we freeze the BN layers during the fine-
tuning, the models are not sensitive to the batch size (line 7-
10). These two set of experiments indicate that, for semantic
segmentation models, the BN size is the one that matters
instead of the batch size. However, we do note that smaller
batch size leads to longer training time because we need to
increase the number of training iterations for models with
small batch size.

4.4 Instance Segmentation Benchmark

To benchmark the performance of instance segmentation, we
select 100 foreground object categories from the full dataset,
termed as InstSeg100. The plot of the instance number per
object in InstSeg100 is shown in Fig. 10. The total number of
object instances is 218K, on average there are 2.2K instances
per object category and 10 instances per image; all the objects
except ship have more than 100 instances.

We use Mask R-CNN He et al. (2017) models as base-
lines for InstSeg100. The models use FPN-50 as backbone
network, initialized from ImageNet, other hyper-parameters
follow those used in He et al. (2017). Two variants are pre-
sented, one with single scale training and the other with

Table 5 Baseline performance on the validation set of InstSeg100

Networks mAPS mAPM mAPL mAP

Mask R-CNN single-scale 0.0542 0.1737 0.2883 0.1832

Mask R-CNN multi-scale 0.0733 0.2256 0.3584 0.2241

multi-scale training. Their performance on the validation
set is shown in Table 5. We report the overall mean Aver-
age Precision mAP, along with metrics on different object
scales, denoted by mAPS (objects smaller than 32× 32 pix-
els), mAPM (between 32 × 32 and 96 × 96 pixels) and
mAPL (larger than 96×96 pixels). Numbers suggest that: (1)
multi-scale training could greatly improve the averageperfor-
mance (∼ 0.04 in mAP); (2) instance segmentation of small
objects on our dataset is extremely challenging and it does not
improve (∼ 0.02) as much as large objects (∼ 0.07) when
using multi-scale training. Qualitative results of the Mask R-
CNN model are presented in Fig. 11. We can see that it is a
strong baseline, giving correct detections and accurate object
boundaries. Some typical errors are object reflections in the
mirror, as shown in the bottom right example.

4.5 HowDoes Scene Parsing Performance Improve
with Instance Information?

In the previous sections, we train and test semantic and
instance segmentation tasks separately. Given that instance
segmentation is trained with additional instance information
compared to scene parsing, we further analyze how instance
information can assist scene parsing.

Instead of re-modeling, we study this problem by fusing
results from our trained state-of-the-art models, PSPNet for
scene parsing and Mask R-CNN for instance segmentation.
Concretely, we first take Mask R-CNN outputs and thresh-
old predicted instances by confidence (≥ 0.95); then we
overlay the instance masks on to the PSPNet predictions; if
one pixel belongs to multiple instances, it takes the semantic
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Fig. 11 Images, ground-truths, and instance segmentation results given by multi-scale Mask R-CNN model

Table 6 Scene parsing performance before and after fusing outputs
from instance segmentation model Mask R-CNN

Networks Pixel Acc. Mean IoU

Before (%) After (%) Before After

DilatedResNet-50 +
PPM (Zhao et al.
2017b)

80.23 80.21 0.4204 0.4256

DilatedResNet-101 +
PPM (Zhao et al.
2017b)

80.91 80.91 0.4253 0.4290

label with the highest confidence. Note that instance seg-
mentation only works for 100 foreground object categories
as opposed to 150 categories, so stuff predictions come from
the scene parsing model. Quantitative results are shown in
Table 6. Overall the fusion improves scene parsing perfor-
mance, while pixel accuracy stays around the same, themean
IoU improves around 0.4–0.5%. This experiment demon-
strates that instance level information is useful for helping
the non-instance-aware scene parsing task.

Fig. 12 Scene Parsing Track Results, ranked by pixel accuracy and mean IoU
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Table 7 Top performing models in Scene Parsing for Places Challenge
2016

Team Pixel Acc. (%) Mean IoU Score

SenseCUSceneParsing
(Zhao et al. 2017b)

74.73 0.3968 0.5720

Adelaide (Wu et al. 2016) 74.49 0.3898 0.5673

360-MCG-CT-CAS_SP 73.67 0.3746 0.5556

Table 8 Top performing models in Scene Parsing for Places Challenge
2017

Team Pixel Acc. (%) Mean IoU Score

CASIA_IVA_JD 73.40 0.3754 0.5547

WinterIsComing 73.46 0.3741 0.5543

Xiaodan Liang 72.22 0.3672 0.5447

5 Places Challenges

In order to foster new models for pixel-wise scene under-
standing, we organized in 2016 and 2017 the Places Chal-
lenge including the scene parsing track and instance segmen-
tation track.

5.1 Scene Parsing Track

Scene parsing submissions were ranked based on the aver-
age score of the mean IoU and pixel-wise accuracy in the
benchmark test set, as shown in Fig. 12.

The Scene Parsing Track totally received 75 submissions
from 22 teams in 2016 and 27 submissions from 11 teams in

2017. The top performing teams for both years are shown in
Tables 7 and 8. Thewinning team in 2016, proposing PSPNet
(Zhao et al. 2017b) still holds the highest score. Figure 13
shows some qualitative results from the top performingmod-
els on each year.

In Fig. 14we compare the topmodels against the proposed
baselines and human performance (approximately measured
as the annotation consistency in Sect. 3.3), which could be
the upper bound performance. As an interesting comparison,
if we use the image mode generated in Fig. 6 as prediction
on the testing set, it achieves 20.30% pixel accuracy, which
could be the lower bound performance for all the models.

Some error cases are shown in Fig. 15. We can see that
models usually fail to detect the concepts in some images that
have occlusions or require high-level context reasoning. For
example, the boat in the first image is not a typical view of a
boat, making the models fail; For the last image, the muddy
car is missed by all the top performer networks because of
its muddy camouflage.

5.2 Instance Segmentation Track

For instance segmentation, we used the mean Average Pre-
cision (mAP), following the evaluation metrics of COCO.

The Instance Segmentation Track, introduced in Places
Challenge 2017, received 12 submissions from 5 teams. Two
teams beat the strong Mask R-CNN baseline by a good mar-
gin, their best model performances are shown in Table 9
togetherwith theMaskR-CNNbaseline trained by ourselves.
The performances for small, medium and large objects are
also reported, following Sect. 4.4. Figure 16 shows qualita-
tive results from the best model of the teams.

Fig. 13 Scene Parsing results given by top methods for Places Challenge 2016 and 2017
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Fig. 14 Top scene parsing models compared with human performance
and baselines in terms of pixel accuracy. Scene parsing based on the
image mode has a 20.30% pixel accuracy

As can be seen in Table 9, both methods outperform the
Mask R-CNN at any of the object scales, even though they
still struggle withmedium and small objects. The submission
from Megvii (Face++) seems to particularly advantage G-
RMI in terms of small objects, probably due to the use of
contextual information. Their mAP on small objects shows a

relative improvement over G-RMI of 41%, compared to the
19% and 6% of medium and large objects.

This effect can be qualitatively seen in Fig. 16.While both
methods perform similarlywell in finding large object classes
such as people or tables, Megvii (Face++) is able to detect
small paintings (rows 1 and 3) or lights (row 5) occupying
small regions.

5.3 Take-Aways from the Challenge

Looking at the challenge results, there are several peculiar-
ities that make ADE20K challenging for instance segmen-
tation. First, ADE20K contains plenty of small objects. It is
hard for most of instance segmentation frameworks to dis-
tinguish small objects from background, and even harder to
recognize and classify them into correct categories. Second,
ADE20K is highly diverse in terms of scenes and objects,
requiring models of strong capability to achieve better per-
formance in various scenes. Third, scenes in ADE20K are
generally crowded. The inter-class occlusion and intro-class
occlusion create problems for object detection as well as
instance segmentation. This is can be seen in Fig. 16, where
the models struggle to detect some of the boxes in the clut-
tered areas (row 2, left) or the counter inf row 4, covered by
multiple people.

Fig. 15 Ground-truths and predictions given by top methods for scene parsing. The mistaken regions are labeled. We can see that models make
mistakes on objects in non-canonical views such as the boat in first example, and on objects which require high-level reasoning such as the muddy
car in the last example
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Table 9 Top performing models
in Instance Segmentation for
Places Challenge 2017

Team mAPS mAPM mAPL mAP

Megvii (Face++) (Peng et al. 2018) 0.1386 0.3015 0.4119 0.2977

G-RMI 0.0980 0.2523 0.3858 0.2415

Baseline Mask R-CNN 0.0733 0.2256 0.3584 0.2241

Fig. 16 Instance Segmentation results given by top methods for Places Challenge 2017

To further gain insight from the insiders, we invite the
leading author of the winning method for the instance seg-
mentation track in Places Challenge, Tete Xiao, to give a
summary of their method as follows (the method itself is not
open-sourced due to the company policy):

Following a top-down instance segmentation frame-
work, we starts with a module to generate object
proposals first then classify each pixel within the pro-
posal. But unlike RoI Align used in Mask-RCNN (He
et al. 2017), we use Precise RoI Pooling (Jiang et al.
2018) to extract features for each proposal. Precise
RoI Pooling avoids sampling the pivot points used in
RoI Align by regarding a discrete feature map as a
continuous interpolated feature map and directly com-
puting a two-order integral. The good alignment of
features provide good improvement for object detec-
tion, while even higher gain for instance segmentation.
To improve the recognition of small objects, we make
use of contextual information by combining, for each
proposal, the features of the previous and following lay-
ers. Given that top-down instance segmentation relies
heavily on object detection, the model ensembles mul-
tiple object bounding-boxes before fed into a mask
generator. We also find that the models cannot avoid
predicting objects in the mirror, which indicates that

current models are still incapable of high-level reason-
ing in parallel with low-level visual cues.

6 Object-Part Joint Segmentation

Since ADE20K contains part annotations for various object
classes, we further train a network to jointly segment objects
and parts. There are 59 out of total 150 objects that con-
tain parts, some examples can be found in Fig. 3. In
total there are 153 part classes included. We use UPer-
Net (Xiao et al. 2018) to jointly train object and part
segmentation. During training, we include the non-part
classes and only calculate softmax loss within the set of
part classes via ground-truth object class. During inference,
we first pick out a predicted object class and get the pre-
dicted part classes from its corresponding part set. This
is organized in a cascaded way. We show the qualitative
results of UPerNet in Fig. 17, and the quantitative perfor-
mance of part segmentation for several selected objects in
Fig. 18.
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Fig. 17 Object and part joint segmentation results predicted by UPerNet (Xiao et al. 2018). Object parts are segmented based on the top of the
corresponding object segmentation mask

Fig. 18 Part segmentation performance (in mean IoU) grouped by sev-
eral selected objects predicted by UPerNet

7 Applications

Accurate scene parsing leads to wider applications. Here we
take the hierarchical semantic segmentation, automatic scene
content removal, and scene synthesis as exemplar applica-
tions of the scene parsing models.

Hierarchical Semantic Segmentation Given the wordnet
tree constructed on the object annotations shown in Fig. 7,
the 150 categories are hierarchically connected and have
hyponyms relations. Thuswe can graduallymerge the objects
into their hyponyms so that classeswith similar semantics are
merged at the early levels. In this way, we generate a hierar-
chical semantic segmentation of the image shown in Fig. 19.
The tree also provides a principled way to segment more
general visual concepts. For example, to detect all furniture
in a scene, we can simply merge the hyponyms associated
with that synset, such as the chair, table, bench, and book-
case.

Automatic ImageContentRemoval Image content removal
methods typically require the users to annotate the pre-
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Fig. 19 The examples of the hierarchical semantic segmentation.
Objects with similar semantics like furnitures and vegetations are
merged at early levels following the wordnet tree

cise boundary of the target objects to be removed. Here,
based on the predicted object probability map from scene
parsing networks, we automatically identify the image
regions of the target objects. After cropping out the tar-
get objects using the predicted object score maps, we
simply use image completion/inpainting methods to fill
the holes in the image. Figure 20 shows some exam-
ples of the automatic image content removal. It can be
seen that with the object score maps, we are able to
crop out the objects from an image precisely. The image
completion technique used is described in (Huang et al.
2014).

Scene Synthesis Given a scene image, the scene parsing
network can predict a semantic label mask. Furthermore, by
coupling the scene parsing network with the recent image
synthesis technique proposed in Nguyen et al. (2016), we
can also synthesize a scene image given the semantic label
mask. The general idea is to optimize the input code of
a deep image generator network to produce an image that
highly activates the pixel-wise output of the scene parsing
network. Figure 21 shows three synthesized image samples

Fig. 20 Automatic image content removal using the predicted object
score maps given by the scene parsing network. We are able to remove
not only individual objects such as person, tree, car, but also groups of
them or even all the discrete objects. For each row, the first image is the
original image, the second is the object score map, and the third one is
the filled-in image

Fig. 21 Scene synthesis. Given annotation masks, images are synthe-
sized by coupling the scene parsing network and the image synthesis
method proposed in Nguyen et al. (2016)

given the semantic label mask in each row. As compari-
son, we also show the original image associated with the
semantic label mask. Conditioned on a semantic mask,
the deep image generator network is able to synthesize
an image with similar spatial configuration of visual con-
cepts.
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8 Conclusion

In this work we introduced the ADE20K dataset, a densely
annotated dataset with the instances of stuff, objects, and
parts, covering a diverse set of visual concepts in scenes.
The dataset was carefully annotated by a single annota-
tor to ensure precise object boundaries within the image
and the consistency of object naming across the images.
Benchmarks for scene parsing and instance segmentation are
constructed based on the ADE20K dataset. We further orga-
nized challenges and evaluated the state-of-the-art models
on our benchmarks. All the data and pre-trained models are
released to the public.
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